p19INK4d Controls Hematopoietic Stem Cells in a Cell-Autonomous Manner during Genotoxic Stress and through the Microenvironment during Aging
نویسندگان
چکیده
Hematopoietic stem cells (HSCs) are characterized by the capacity for self-renewal and the ability to reconstitute the entire hematopoietic compartment. Thrombopoietin maintains adult HSCs in a quiescent state through the induction of cell cycle inhibitors p57(Kip2) and p19(INK4d). Using the p19(INK4d-/-) mouse model, we investigated the role of p19(INK4d) in basal and stress-induced hematopoiesis. We demonstrate that p19(INK4d) is involved in the regulation of HSC quiescence by inhibition of the G0/G1 cell cycle transition. Under genotoxic stress conditions, the absence of p19(INK4d) in HSCs leads to accelerated cell cycle exit, accumulation of DNA double-strand breaks, and apoptosis when cells progress to the S/G2-M stages of the cell cycle. Moreover, p19(INK4d) controls the HSC microenvironment through negative regulation of megakaryopoiesis. Deletion of p19(INK4d) results in megakaryocyte hyperproliferation and increased transforming growth factor β1 secretion. This leads to fibrosis in the bone marrow and spleen, followed by loss of HSCs during aging.
منابع مشابه
Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملLack of communication rusts and ages stem cells
Life-long hematopoietic demands are filled by a pool of hematopoietic stem cells (HSC) with self-renewal and multipotential differentiation ability. Generation of reactive oxygen species (ROS) at low and moderate levels is required for HSC activity. However, a sustained, abnormal increase in ROS production occurs under aging and genotoxic stress, which inhibits HSC self-renewal and induces HSC ...
متن کاملNecdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells.
We recently defined a critical role for p53 in regulating the quiescence of adult hematopoietic stem cells (HSCs) and identified necdin as a candidate p53 target gene. Necdin is a growth-suppressing protein and the gene encoding it is one of several that are deleted in patients with Prader-Willi syndrome. To define the intrinsic role of necdin in adult hematopoiesis, in the present study, we tr...
متن کاملInvestigation of Stem Cell Aging Throughout the Lifetime and Therapeutic Opportunities
Introduction: Aging is a natural phenomenon that is caused by changes in the cells of the body. Theoretically, aging starts from birth and lasts throughout life. These changes affect the function of the cells. Also, in old tissues, the capacity for homeostasis and tissue repair is decline due to destructive changes in specific tissue stem cells, niche of stem cells and systemic factors that reg...
متن کاملAdvances and challenges in storage, transplantation, expansion and homing of Umbilical Cord Blood Hematopoietic Stem Cells (UCB-HSCs)
Abstract Background and Objectives Umbilical cord blood hematopoietic stem cells (UCB-HSCs) have high potential capabilities in the treatment of hematological and non-hematological disorders. Awareness of biology, self-renewal, homing, expansion, storage, and transplantation can lead to optimal use of these cells. Materials and Methods In this Review article in order to investigate the adv...
متن کامل